3.3.9 \(\int \frac {\tan (e+f x)}{\sqrt {d \cot (e+f x)}} \, dx\) [209]

Optimal. Leaf size=209 \[ -\frac {\text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} \sqrt {d} f}+\frac {\text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} \sqrt {d} f}+\frac {2}{f \sqrt {d \cot (e+f x)}}+\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)-\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} \sqrt {d} f}-\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} \sqrt {d} f} \]

[Out]

-1/2*arctan(1-2^(1/2)*(d*cot(f*x+e))^(1/2)/d^(1/2))/f*2^(1/2)/d^(1/2)+1/2*arctan(1+2^(1/2)*(d*cot(f*x+e))^(1/2
)/d^(1/2))/f*2^(1/2)/d^(1/2)+1/4*ln(d^(1/2)+cot(f*x+e)*d^(1/2)-2^(1/2)*(d*cot(f*x+e))^(1/2))/f*2^(1/2)/d^(1/2)
-1/4*ln(d^(1/2)+cot(f*x+e)*d^(1/2)+2^(1/2)*(d*cot(f*x+e))^(1/2))/f*2^(1/2)/d^(1/2)+2/f/(d*cot(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 209, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.526, Rules used = {16, 3555, 3557, 335, 303, 1176, 631, 210, 1179, 642} \begin {gather*} -\frac {\text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} \sqrt {d} f}+\frac {\text {ArcTan}\left (\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}+1\right )}{\sqrt {2} \sqrt {d} f}+\frac {2}{f \sqrt {d \cot (e+f x)}}+\frac {\log \left (\sqrt {d} \cot (e+f x)-\sqrt {2} \sqrt {d \cot (e+f x)}+\sqrt {d}\right )}{2 \sqrt {2} \sqrt {d} f}-\frac {\log \left (\sqrt {d} \cot (e+f x)+\sqrt {2} \sqrt {d \cot (e+f x)}+\sqrt {d}\right )}{2 \sqrt {2} \sqrt {d} f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]/Sqrt[d*Cot[e + f*x]],x]

[Out]

-(ArcTan[1 - (Sqrt[2]*Sqrt[d*Cot[e + f*x]])/Sqrt[d]]/(Sqrt[2]*Sqrt[d]*f)) + ArcTan[1 + (Sqrt[2]*Sqrt[d*Cot[e +
 f*x]])/Sqrt[d]]/(Sqrt[2]*Sqrt[d]*f) + 2/(f*Sqrt[d*Cot[e + f*x]]) + Log[Sqrt[d] + Sqrt[d]*Cot[e + f*x] - Sqrt[
2]*Sqrt[d*Cot[e + f*x]]]/(2*Sqrt[2]*Sqrt[d]*f) - Log[Sqrt[d] + Sqrt[d]*Cot[e + f*x] + Sqrt[2]*Sqrt[d*Cot[e + f
*x]]]/(2*Sqrt[2]*Sqrt[d]*f)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 3555

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Tan[c + d*x])^(n + 1)/(b*d*(n + 1)), x] - Dist[
1/b^2, Int[(b*Tan[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1]

Rule 3557

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {\tan (e+f x)}{\sqrt {d \cot (e+f x)}} \, dx &=d \int \frac {1}{(d \cot (e+f x))^{3/2}} \, dx\\ &=\frac {2}{f \sqrt {d \cot (e+f x)}}-\frac {\int \sqrt {d \cot (e+f x)} \, dx}{d}\\ &=\frac {2}{f \sqrt {d \cot (e+f x)}}+\frac {\text {Subst}\left (\int \frac {\sqrt {x}}{d^2+x^2} \, dx,x,d \cot (e+f x)\right )}{f}\\ &=\frac {2}{f \sqrt {d \cot (e+f x)}}+\frac {2 \text {Subst}\left (\int \frac {x^2}{d^2+x^4} \, dx,x,\sqrt {d \cot (e+f x)}\right )}{f}\\ &=\frac {2}{f \sqrt {d \cot (e+f x)}}-\frac {\text {Subst}\left (\int \frac {d-x^2}{d^2+x^4} \, dx,x,\sqrt {d \cot (e+f x)}\right )}{f}+\frac {\text {Subst}\left (\int \frac {d+x^2}{d^2+x^4} \, dx,x,\sqrt {d \cot (e+f x)}\right )}{f}\\ &=\frac {2}{f \sqrt {d \cot (e+f x)}}+\frac {\text {Subst}\left (\int \frac {1}{d-\sqrt {2} \sqrt {d} x+x^2} \, dx,x,\sqrt {d \cot (e+f x)}\right )}{2 f}+\frac {\text {Subst}\left (\int \frac {1}{d+\sqrt {2} \sqrt {d} x+x^2} \, dx,x,\sqrt {d \cot (e+f x)}\right )}{2 f}+\frac {\text {Subst}\left (\int \frac {\sqrt {2} \sqrt {d}+2 x}{-d-\sqrt {2} \sqrt {d} x-x^2} \, dx,x,\sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} \sqrt {d} f}+\frac {\text {Subst}\left (\int \frac {\sqrt {2} \sqrt {d}-2 x}{-d+\sqrt {2} \sqrt {d} x-x^2} \, dx,x,\sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} \sqrt {d} f}\\ &=\frac {2}{f \sqrt {d \cot (e+f x)}}+\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)-\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} \sqrt {d} f}-\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} \sqrt {d} f}+\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} \sqrt {d} f}-\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} \sqrt {d} f}\\ &=-\frac {\tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} \sqrt {d} f}+\frac {\tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} \sqrt {d} f}+\frac {2}{f \sqrt {d \cot (e+f x)}}+\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)-\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} \sqrt {d} f}-\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} \sqrt {d} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.07, size = 35, normalized size = 0.17 \begin {gather*} \frac {2 \, _2F_1\left (-\frac {1}{4},1;\frac {3}{4};-\cot ^2(e+f x)\right )}{f \sqrt {d \cot (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]/Sqrt[d*Cot[e + f*x]],x]

[Out]

(2*Hypergeometric2F1[-1/4, 1, 3/4, -Cot[e + f*x]^2])/(f*Sqrt[d*Cot[e + f*x]])

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 0.38, size = 652, normalized size = 3.12

method result size
default \(\frac {\left (\cos \left (f x +e \right )+1\right )^{2} \left (\cos \left (f x +e \right )-1\right ) \left (i \sqrt {\frac {\cos \left (f x +e \right )-1}{\sin \left (f x +e \right )}}\, \sqrt {\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sin \left (f x +e \right ) \EllipticPi \left (\sqrt {-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-i \sqrt {\frac {\cos \left (f x +e \right )-1}{\sin \left (f x +e \right )}}\, \sqrt {\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sin \left (f x +e \right ) \EllipticPi \left (\sqrt {-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+\sqrt {\frac {\cos \left (f x +e \right )-1}{\sin \left (f x +e \right )}}\, \sqrt {\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sin \left (f x +e \right ) \EllipticPi \left (\sqrt {-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+\sqrt {\frac {\cos \left (f x +e \right )-1}{\sin \left (f x +e \right )}}\, \sqrt {\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sin \left (f x +e \right ) \EllipticPi \left (\sqrt {-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-2 \sqrt {\frac {\cos \left (f x +e \right )-1}{\sin \left (f x +e \right )}}\, \sqrt {\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sin \left (f x +e \right ) \EllipticF \left (\sqrt {-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right )+2 \cos \left (f x +e \right ) \sqrt {2}-2 \sqrt {2}\right ) \sqrt {2}}{2 f \sin \left (f x +e \right )^{4} \sqrt {\frac {d \cos \left (f x +e \right )}{\sin \left (f x +e \right )}}}\) \(652\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)/(d*cot(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2/f*(cos(f*x+e)+1)^2*(cos(f*x+e)-1)*(I*((cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((-1+cos(f*x+e)+sin(f*x+e))/sin(f*x
+e))^(1/2)*(-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))^(1/2)*sin(f*x+e)*EllipticPi((-(-1+cos(f*x+e)-sin(f*x+e))/s
in(f*x+e))^(1/2),1/2-1/2*I,1/2*2^(1/2))-I*((cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((-1+cos(f*x+e)+sin(f*x+e))/sin(f*
x+e))^(1/2)*(-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))^(1/2)*sin(f*x+e)*EllipticPi((-(-1+cos(f*x+e)-sin(f*x+e))/
sin(f*x+e))^(1/2),1/2+1/2*I,1/2*2^(1/2))+((cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((-1+cos(f*x+e)+sin(f*x+e))/sin(f*x
+e))^(1/2)*(-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))^(1/2)*sin(f*x+e)*EllipticPi((-(-1+cos(f*x+e)-sin(f*x+e))/s
in(f*x+e))^(1/2),1/2-1/2*I,1/2*2^(1/2))+((cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+
e))^(1/2)*(-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))^(1/2)*sin(f*x+e)*EllipticPi((-(-1+cos(f*x+e)-sin(f*x+e))/si
n(f*x+e))^(1/2),1/2+1/2*I,1/2*2^(1/2))-2*((cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((-1+cos(f*x+e)+sin(f*x+e))/sin(f*x
+e))^(1/2)*(-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))^(1/2)*sin(f*x+e)*EllipticF((-(-1+cos(f*x+e)-sin(f*x+e))/si
n(f*x+e))^(1/2),1/2*2^(1/2))+2*cos(f*x+e)*2^(1/2)-2*2^(1/2))/sin(f*x+e)^4/(d*cos(f*x+e)/sin(f*x+e))^(1/2)*2^(1
/2)

________________________________________________________________________________________

Maxima [A]
time = 0.54, size = 196, normalized size = 0.94 \begin {gather*} \frac {d^{2} {\left (\frac {\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} - \frac {\sqrt {2} \log \left (\sqrt {2} \sqrt {d} \sqrt {\frac {d}{\tan \left (f x + e\right )}} + d + \frac {d}{\tan \left (f x + e\right )}\right )}{\sqrt {d}} + \frac {\sqrt {2} \log \left (-\sqrt {2} \sqrt {d} \sqrt {\frac {d}{\tan \left (f x + e\right )}} + d + \frac {d}{\tan \left (f x + e\right )}\right )}{\sqrt {d}}}{d^{2}} + \frac {8}{d^{2} \sqrt {\frac {d}{\tan \left (f x + e\right )}}}\right )}}{4 \, f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)/(d*cot(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

1/4*d^2*((2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) + 2*sqrt(d/tan(f*x + e)))/sqrt(d))/sqrt(d) + 2*sqrt(2)
*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(d) - 2*sqrt(d/tan(f*x + e)))/sqrt(d))/sqrt(d) - sqrt(2)*log(sqrt(2)*sqrt(d)
*sqrt(d/tan(f*x + e)) + d + d/tan(f*x + e))/sqrt(d) + sqrt(2)*log(-sqrt(2)*sqrt(d)*sqrt(d/tan(f*x + e)) + d +
d/tan(f*x + e))/sqrt(d))/d^2 + 8/(d^2*sqrt(d/tan(f*x + e))))/f

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 610 vs. \(2 (167) = 334\).
time = 0.40, size = 610, normalized size = 2.92 \begin {gather*} -\frac {4 \, \sqrt {2} d f \left (\frac {1}{d^{2} f^{4}}\right )^{\frac {1}{4}} \arctan \left (-\sqrt {2} f \sqrt {\frac {d \cos \left (f x + e\right )}{\sin \left (f x + e\right )}} \left (\frac {1}{d^{2} f^{4}}\right )^{\frac {1}{4}} + \sqrt {2} f \sqrt {\frac {\sqrt {2} d^{2} f^{3} \sqrt {\frac {d \cos \left (f x + e\right )}{\sin \left (f x + e\right )}} \left (\frac {1}{d^{2} f^{4}}\right )^{\frac {3}{4}} \sin \left (f x + e\right ) + d^{2} f^{2} \sqrt {\frac {1}{d^{2} f^{4}}} \sin \left (f x + e\right ) + d \cos \left (f x + e\right )}{\sin \left (f x + e\right )}} \left (\frac {1}{d^{2} f^{4}}\right )^{\frac {1}{4}} - 1\right ) \cos \left (f x + e\right ) + 4 \, \sqrt {2} d f \left (\frac {1}{d^{2} f^{4}}\right )^{\frac {1}{4}} \arctan \left (-\sqrt {2} f \sqrt {\frac {d \cos \left (f x + e\right )}{\sin \left (f x + e\right )}} \left (\frac {1}{d^{2} f^{4}}\right )^{\frac {1}{4}} + \sqrt {2} f \sqrt {-\frac {\sqrt {2} d^{2} f^{3} \sqrt {\frac {d \cos \left (f x + e\right )}{\sin \left (f x + e\right )}} \left (\frac {1}{d^{2} f^{4}}\right )^{\frac {3}{4}} \sin \left (f x + e\right ) - d^{2} f^{2} \sqrt {\frac {1}{d^{2} f^{4}}} \sin \left (f x + e\right ) - d \cos \left (f x + e\right )}{\sin \left (f x + e\right )}} \left (\frac {1}{d^{2} f^{4}}\right )^{\frac {1}{4}} + 1\right ) \cos \left (f x + e\right ) + \sqrt {2} d f \left (\frac {1}{d^{2} f^{4}}\right )^{\frac {1}{4}} \cos \left (f x + e\right ) \log \left (\frac {\sqrt {2} d^{2} f^{3} \sqrt {\frac {d \cos \left (f x + e\right )}{\sin \left (f x + e\right )}} \left (\frac {1}{d^{2} f^{4}}\right )^{\frac {3}{4}} \sin \left (f x + e\right ) + d^{2} f^{2} \sqrt {\frac {1}{d^{2} f^{4}}} \sin \left (f x + e\right ) + d \cos \left (f x + e\right )}{\sin \left (f x + e\right )}\right ) - \sqrt {2} d f \left (\frac {1}{d^{2} f^{4}}\right )^{\frac {1}{4}} \cos \left (f x + e\right ) \log \left (-\frac {\sqrt {2} d^{2} f^{3} \sqrt {\frac {d \cos \left (f x + e\right )}{\sin \left (f x + e\right )}} \left (\frac {1}{d^{2} f^{4}}\right )^{\frac {3}{4}} \sin \left (f x + e\right ) - d^{2} f^{2} \sqrt {\frac {1}{d^{2} f^{4}}} \sin \left (f x + e\right ) - d \cos \left (f x + e\right )}{\sin \left (f x + e\right )}\right ) - 8 \, \sqrt {\frac {d \cos \left (f x + e\right )}{\sin \left (f x + e\right )}} \sin \left (f x + e\right )}{4 \, d f \cos \left (f x + e\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)/(d*cot(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

-1/4*(4*sqrt(2)*d*f*(1/(d^2*f^4))^(1/4)*arctan(-sqrt(2)*f*sqrt(d*cos(f*x + e)/sin(f*x + e))*(1/(d^2*f^4))^(1/4
) + sqrt(2)*f*sqrt((sqrt(2)*d^2*f^3*sqrt(d*cos(f*x + e)/sin(f*x + e))*(1/(d^2*f^4))^(3/4)*sin(f*x + e) + d^2*f
^2*sqrt(1/(d^2*f^4))*sin(f*x + e) + d*cos(f*x + e))/sin(f*x + e))*(1/(d^2*f^4))^(1/4) - 1)*cos(f*x + e) + 4*sq
rt(2)*d*f*(1/(d^2*f^4))^(1/4)*arctan(-sqrt(2)*f*sqrt(d*cos(f*x + e)/sin(f*x + e))*(1/(d^2*f^4))^(1/4) + sqrt(2
)*f*sqrt(-(sqrt(2)*d^2*f^3*sqrt(d*cos(f*x + e)/sin(f*x + e))*(1/(d^2*f^4))^(3/4)*sin(f*x + e) - d^2*f^2*sqrt(1
/(d^2*f^4))*sin(f*x + e) - d*cos(f*x + e))/sin(f*x + e))*(1/(d^2*f^4))^(1/4) + 1)*cos(f*x + e) + sqrt(2)*d*f*(
1/(d^2*f^4))^(1/4)*cos(f*x + e)*log((sqrt(2)*d^2*f^3*sqrt(d*cos(f*x + e)/sin(f*x + e))*(1/(d^2*f^4))^(3/4)*sin
(f*x + e) + d^2*f^2*sqrt(1/(d^2*f^4))*sin(f*x + e) + d*cos(f*x + e))/sin(f*x + e)) - sqrt(2)*d*f*(1/(d^2*f^4))
^(1/4)*cos(f*x + e)*log(-(sqrt(2)*d^2*f^3*sqrt(d*cos(f*x + e)/sin(f*x + e))*(1/(d^2*f^4))^(3/4)*sin(f*x + e) -
 d^2*f^2*sqrt(1/(d^2*f^4))*sin(f*x + e) - d*cos(f*x + e))/sin(f*x + e)) - 8*sqrt(d*cos(f*x + e)/sin(f*x + e))*
sin(f*x + e))/(d*f*cos(f*x + e))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\tan {\left (e + f x \right )}}{\sqrt {d \cot {\left (e + f x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)/(d*cot(f*x+e))**(1/2),x)

[Out]

Integral(tan(e + f*x)/sqrt(d*cot(e + f*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)/(d*cot(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(tan(f*x + e)/sqrt(d*cot(f*x + e)), x)

________________________________________________________________________________________

Mupad [B]
time = 0.19, size = 79, normalized size = 0.38 \begin {gather*} \frac {2}{f\,\sqrt {\frac {d}{\mathrm {tan}\left (e+f\,x\right )}}}+\frac {{\left (-1\right )}^{1/4}\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {\frac {d}{\mathrm {tan}\left (e+f\,x\right )}}}{\sqrt {d}}\right )}{\sqrt {d}\,f}-\frac {{\left (-1\right )}^{1/4}\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {\frac {d}{\mathrm {tan}\left (e+f\,x\right )}}}{\sqrt {d}}\right )}{\sqrt {d}\,f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e + f*x)/(d*cot(e + f*x))^(1/2),x)

[Out]

2/(f*(d/tan(e + f*x))^(1/2)) + ((-1)^(1/4)*atan(((-1)^(1/4)*(d/tan(e + f*x))^(1/2))/d^(1/2)))/(d^(1/2)*f) - ((
-1)^(1/4)*atanh(((-1)^(1/4)*(d/tan(e + f*x))^(1/2))/d^(1/2)))/(d^(1/2)*f)

________________________________________________________________________________________